Jumat, 22 Juni 2012

PARALEL PROCESSING


Pada artikel sebelumnya saya membahas tentang "Komputasi Modern", kali ini saya akan membahas tentang "Paralel Processing", untuk lebih jelasnya,mari kita simak lebih dalam lagi.




KOMPUTASI dan PARALEL PROCESSING

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuanganbioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak. Kasus kedua umum ditemui di kalkulasi numerik untuk menyelesaikan persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi) dll.

Untuk melakukan berbagai jenis komputasi paralel diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk digunakan perangkat lunak pendukung yang biasa disebut middleware yang berperan mengatur distribusi antar titik dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Salah satu middleware yang asli dikembangkan di Indonesia adalah OpenPC yang dipelopori oleh GFTK LIPI dan diimplementasikan di LIPI Public Center.

Pemrograman Paralel sendiri adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam satu jaringan komputer, biasanya disebut sistem terdistribusi. Bahasa pemrograman yang populer digunakan dalam pemrograman paralel adalah MPI (Message Passing Interface) dan PVM (Parallel Virtual Machine).

Yang perlu diingat adalah komputasi paralel berbeda dengan multitasking. Pengertian multitasking adalah komputer dengan processor tunggal mengeksekusi beberapa tugas secara bersamaan. Walaupun beberapa orang yang bergelut di bidang sistem operasi beranggapan bahwa komputer tunggal tidak bisa melakukan beberapa pekerjaan sekaligus, melainkan proses penjadwalan yang berlakukan pada sistem operasi membuat komputer seperti mengerjakan tugas secara bersamaan. Sedangkan komputasi paralel sudah dijelaskan sebelumnya, bahwa komputasi paralel menggunakan beberapa processor atau komputer. Selain itu komputasi paralel tidak menggunakan arsitektur Von Neumann.

Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui terlebih dahulu pengertian mengenai model dari komputasi. Ada 4 model komputasi yang digunakan, yaitu:
  • SIMD
  • SIMD
  • MISD
  • MIMD
SISD

Yang merupakan singkatan dari Single Instruction, Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.


SIMD

Yang merupakan singkatan dari Single Instruction, Multiple Data. SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).


MISD

Yang merupakan singkatan dari Multiple Instruction, Single Data. MISD menggunakan banyak processor dengan setiap processor menggunakan instruksi yang berbeda namun mengolah data yang sama. Hal ini merupakan kebalikan dari model SIMD. Untuk contoh, kita bisa menggunakan kasus yang sama pada contoh model SIMD namun cara penyelesaian yang berbeda. Pada MISD jika pada komputer pertama, kedua, ketiga, keempat dan kelima sama-sama mengolah data dari urutan 1-100, namun algoritma yang digunakan untuk teknik pencariannya berbeda di setiap processor. Sampai saat ini belum ada komputer yang menggunakan model MISD.
 
 

Hubungan antara Komputasi Modern dengan Paralel Processing

Hubungan antara komputasi modern dan parallel processing sangat berkaitan, karena penggunaan komputer saat ini atau komputasi dianggap lebih cepat dibandingkan dengan penyelesaian masalah secara manual. Dengan begitu peningkatan kinerja atau proses komputasi semakin diterapkan, dan salah satu caranya adalah dengan meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.

Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Sehingga dapat diselesaikan dengan cepat daripada menggunakan satu komputer saja. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Tetapi ini untuk masalah yang besar saja, komputasi yang masalah kecil, lebih murah menggunakan satu CPU saja.

Sumber:
http://blog.rian.web.id/komputasi_dengan_parallel_processing.html
http://spancills.wordpress.com/2011/05/21/kuis-softskills/
 


Read More.. Read More..

BIOINFORMATIKA


DEFINISI BIOINFORMATIKA DARI BERBAGAI SUMBER SECARA GARIS BESAR:
https://bioinformaticjbub.wordpress.com/2010/02/22/whats-bioinformatics/
Bioinformatika ialah ilmu yang mempelajari penerapan teknik komputasi untuk mengelola dan menganalisis informasi hayati. Bidang ini mencakup penerapan metode-metode matematika,statistika, dan informatika untuk memecahkan masalah-masalah biologi, terutama yang terkait dengan penggunaan sekuens DNAdan asam amino. Contoh topik utama bidang ini meliputi pangkalan data untuk mengelola informasi hayati, penyejajaran sekuens (sequence alignment), prediksi struktur untuk meramalkan strukturprotein atau pun struktur sekunder RNA, analisis filogenetik, dan analisis ekspresi gen.

Wikipedia
Bioinformatika (bahasa Inggris: bioinformatics) adalah (ilmu yang mempelajari) penerapan teknik komputasional untuk mengelola dan menganalisis informasi biologis. Komputasi sebetulnya bisa dijelaskan sebagai menemukan pemecahan masalah dari input yang diberikan dengan menggunakan algoritma. Ini ialah apa yang disebut teori komputasi, sub-bidang dari ilmu komputer dan matematika. Selama ribuan tahun, perhitungan dilakukan dengan pena dan kertas, atau kapur dan batu tulis, atau secara mental, kadang-kadang dengan bantuan tabel.
Bidang ini mencakup penerapan metode-metode matematika, statistika, dan informatika untuk memecahkan masalah-masalah biologis, terutama dengan menggunakan sekuens DNA dan asam amino serta informasi yang berkaitan dengannya.

http://suryokuncorojakti-fkh.web.unair.ac.id/artikel_detail 38847Biomolekuler%20dan%20Imunologi-Bioinformatika.html
Bioinformatika adalah kombinasi dari biologi dan teknologi informasi. Disiplin ilmu ini meliputi berbagai perkakas sistem komputasi dan metoda yang digunakan untuk mengatur, meneliti dan menggerakkan besar satuan data biologi. Secara esensial, bioinformatika mempunyai tiga komponen:
  • Penciptaan database yang memungkinkan penyimpanan dan manajemen pengaturan data biologi yang besar.
  • Pengembangan algoritma dan statistik untuk menentukan hubungan diantara sejumlah data set yang besar.
  • Penggunaan dari perkakas untuk analisa dan penafsiran dari berbagai jenis data biologi, mencakup DNA, RNA dan urutan protein, struktur protein, profil ekspresi gen, dan jalur biokimia.

http://www.scribd.com/doc/60229429/Bioinformatika
Bioinformatika merupakan kajian yang memadukan disiplin biologi molekul, matematika dan teknik informasi (TI). Ilmu ini didefinisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologimolekul. Biologi molekul sendiri juga merupakan bidang interdisipliner, mempelajari kehidupan dalam level molekul. Mula-mula bidang kajian ini muncul atas inisiatif para ahli biologi molekul danahli statistik, berdasarkan pola pikir bahwa semua gejala yang ada di alam ini bisa dibuat secara artificial melalui simulasi dari data-data yang ada. 


SEJARAH BIOINFORMATIKA


 Bioinformatika, sesuai dengan asal katanya yaitu “bio” dan “informatika”, adalah gabungan antara ilmu biologi dan ilmu teknik informasi (TI). Pada umumnya, Bioinformatika didefenisikan sebagai aplikasi dari alat komputasi dan analisa untuk menangkap dan menginterpretasikan data-data biologi. Ilmu ini merupakan ilmu baru yang yang merangkup berbagai disiplin ilmu termasuk ilmu komputer, matematika dan fisika, biologi, dan ilmu kedokteran, dimana kesemuanya saling menunjang dan saling bermanfaat satu sama lainnya.
Istilah bioinformatics mulai dikemukakan pada pertengahan era 1980-an untuk mengacu pada penerapan komputer dalam biologi. Namun demikian, penerapan bidang-bidang dalam bioinformatika (seperti pembuatan basis data dan pengembangan algoritma untuk analisis sekuens biologis) sudah dilakukan sejak tahun 1960-an.
Kemajuan teknik biologi molekular dalam mengungkap sekuens biologis dari protein (sejak awal 1950-an) dan asam nukleat (sejak 1960-an) mengawali perkembangan basis data dan teknik analisis sekuens biologis. Basis data sekuens protein mulai dikembangkan pada tahun 1960-an di Amerika Serikat, sementara basis data sekuens DNA dikembangkan pada akhir 1970-an di Amerika Serikat dan Jerman (pada European Molecular Biology Laboratory, Laboratorium Biologi Molekular Eropa). Penemuan teknik sekuensing DNA yang lebih cepat pada pertengahan 1970-an menjadi landasan terjadinya ledakan jumlah sekuens DNA yang berhasil diungkapkan pada 1980-an dan 1990-an, menjadi salah satu pembuka jalan bagi proyek-proyek pengungkapan genom, meningkatkan kebutuhan akan pengelolaan dan analisis sekuens, dan pada akhirnya menyebabkan lahirnya bioinformatika. Perkembangan internet juga mendukung berkembangnya bioinformatika.
Basis data bioinformatika yang terhubung melalui internet memudahkan ilmuwan mengumpulkan hasil sekuensing ke dalam basis data tersebut maupun memperoleh sekuens biologis sebagai bahan analisis, Perkembangan teknologi DNA rekombinan memainkan peranan penting dalam lahirnya bioinformatika. Teknologi DNA rekombinan memunculkan suatu pengetahuan baru dalam rekayasa genetika organisme yang dikenala bioteknologi. Perkembangan bioteknologi dari bioteknologi tradisional ke bioteknologi modren salah satunya ditandainya dengan kemampuan manusia dalam melakukan analisis DNA organisme, sekuensing DNA dan manipulasi DNA. Sekuensing DNA satu organisme, misalnya suatu virus memiliki kurang lebih 5.000 nukleotida atau molekul DNA atau sekitar 11 gen, yang telah berhasil dibaca secara menyeluruh pada tahun 1977. Kemudia Sekuen seluruh DNA manusia terdiri dari 3 milyar nukleotida yang menyusun 100.000 gen dapat dipetakan dalam waktu 3 tahun, walaupun semua ini belum terlalu lengkap. Saat ini terdapat milyaran data nukleotida yang tersimpan dalam database DNA, GenBank di AS yang didirikan tahun 1982. Selain itu, penyebaran program-program aplikasi bioinformatika melalui internet memudahkan ilmuwan mengakses program-program tersebut dan kemudian memudahkan pengembangannya.

PENERAPAN UTAMA BIOINFORMATIKA
  • Basis data sekuens biologis
Sesuai dengan jenis informasi biologis yang disimpannya, basis data sekuens biologis dapat berupa basis data primer untuk menyimpan sekuens primer asam nukleat maupun protein, basis data sekunder untuk menyimpan motif sekuens protein, dan basis data struktur untuk menyimpan data struktur protein maupun asam nukleat. Basis data utama untuk sekuens asam nukleat saat ini adalah GenBank (Amerika Serikat), EMBL (Eropa), dan DDBJ(en) (DNA Data Bank of Japan, Jepang). Ketiga basis data tersebut bekerja sama dan bertukar data secara harian untuk menjaga keluasan cakupan masing-masing basis data. Sumber utama data sekuens asam nukleat adalah submisi langsung dari periset individual, proyek sekuensing genom, dan pendaftaran paten. Selain berisi sekuens asam nukleat, entri dalam basis data sekuens asam nukleat umumnya mengandung informasi tentang jenis asam nukleat (DNA atau RNA), nama organisme sumber asam nukleat tersebut, dan pustaka yang berkaitan dengan sekuens asam nukleat tersebut.
Sementara itu, contoh beberapa basis data penting yang menyimpan sekuens primer protein adalah PIR (Protein Information Resource, Amerika Serikat), Swiss-Prot (Eropa), dan TrEMBL (Eropa). Ketiga basis data tersebut telah digabungkan dalam UniProt (yang didanai terutama oleh Amerika Serikat). Entri dalam UniProt mengandung informasi tentang sekuens protein, nama organisme sumber protein, pustaka yang berkaitan, dan komentar yang umumnya berisi penjelasan mengenai fungsi protein tersebut.
BLAST (Basic Local Alignment Search Tool) merupakan perkakas bioinformatika yang berkaitan erat dengan penggunaan basis data sekuens biologis. Penelusuran BLAST (BLAST search) pada basis data sekuens memungkinkan ilmuwan untuk mencari sekuens asam nukleat maupun protein yang mirip dengan sekuens tertentu yang dimilikinya. Hal ini berguna misalnya untuk menemukan gen sejenis pada beberapa organisme atau untuk memeriksa keabsahan hasil sekuensing maupun untuk memeriksa fungsi gen hasil sekuensing. Algoritma yang mendasari kerja BLAST adalah penyejajaran sekuens.
PDB (Protein Data Bank, Bank Data Protein) adalah basis data tunggal yang menyimpan model struktural tiga dimensi protein dan asam nukleat hasil penentuan eksperimental (dengan kristalografi sinar-X dan spektroskopi NMR). PDB menyimpan data struktur sebagai koordinat tiga dimensi yang menggambarkan posisi atom-atom dalam protein ataupun asam nukleat. info@ncbi.nlm.nih.gov
  • Penyejajaran sekuens
Penyejajaran sekuens (sequence alignment) adalah proses penyusunan/pengaturan dua atau lebih sekuens sehingga persamaan sekuens-sekuens tersebut tampak nyata. Hasil dari proses tersebut juga disebut sebagai sequence alignment atau alignment saja. Baris sekuens dalam suatu alignment diberi sisipan (umumnya dengan tanda "–") sedemikian rupa sehingga kolom-kolomnya memuat karakter yang identik atau sama di antara sekuens-sekuens tersebut. Berikut adalah contoh alignment DNA dari dua sekuens pendek DNA yang berbeda, "ccatcaac" dan "caatgggcaac" (tanda "|" menunjukkan kecocokan atau match di antara kedua sekuens).
 ccat---caac
| ||   ||||
Caatgggcaac
Sequence alignment merupakan metode dasar dalam analisis sekuens. Metode ini digunakan untuk mempelajari evolusi sekuens-sekuens dari leluhur yang sama (common ancestor). Ketidakcocokan (mismatch) dalam alignment diasosiasikan dengan proses mutasi, sedangkan kesenjangan (gap, tanda "–") diasosiasikan dengan proses insersi atau delesi. Sequence alignment memberikan hipotesis atas proses evolusi yang terjadi dalam sekuens-sekuens tersebut. Misalnya, kedua sekuens dalam contoh alignment di atas bisa jadi berevolusi dari sekuens yang sama "ccatgggcaac". Dalam kaitannya dengan hal ini, alignment juga dapat menunjukkan posisi-posisi yang dipertahankan (conserved) selama evolusi dalam sekuens-sekuens protein, yang menunjukkan bahwa posisi-posisi tersebut bisa jadi penting bagi struktur atau fungsi protein tersebut.
Sequence alignment juga digunakan untuk mencari sekuens yang mirip atau sama dalam basis data sekuens. BLAST adalah salah satu metode alignment yang sering digunakan dalam penelusuran basis data sekuens. BLAST menggunakan algoritma heuristik dalam penyusunan alignment.
Beberapa metode alignment lain yang merupakan pendahulu BLAST adalah metode "Needleman-Wunsch" dan "Smith-Waterman". Metode Needleman-Wunsch digunakan untuk menyusun alignment global di antara dua atau lebih sekuens, yaitu alignment atas keseluruhan panjang sekuens tersebut. Metode Smith-Waterman menghasilkan alignment lokal, yaitu alignment atas bagian-bagian dalam sekuens. Kedua metode tersebut menerapkan pemrograman dinamik (dynamic programming) dan hanya efektif untuk alignment dua sekuens (pairwise alignment). Clustal adalah program bioinformatika untuk alignment multipel (multiple alignment), yaitu alignment beberapa sekuens sekaligus. Dua varian utama Clustal adalah ClustalW dan ClustalX.
Metode lain yang dapat diterapkan untuk alignment sekuens adalah metode yang berhubungan dengan Hidden Markov Model ("Model Markov Tersembunyi", HMM). HMM merupakan model statistika yang mulanya digunakan dalam ilmu komputer untuk mengenali pembicaraan manusia (speech recognition). Selain digunakan untuk alignment, HMM juga digunakan dalam metode-metode analisis sekuens lainnya, seperti prediksi daerah pengkode protein dalam genom dan prediksi struktur sekunder protein.


CONTOH-CONTOH LAIN, BIOINFORMATIKA DALAM PENGGUNAAN:

 




Bioinformatika dalam Bidang Klinis
Bioinformatika dalam bidang klinis sering disebut sebagai informatika klinis( clinical informatics ). Aplikasi dari informatika klinis ini berbentuk manajemen data-dataklinis dari pasien melalui Electrical Medical Record  (EMR) yang dikembangkan olehClement J. McDonald dari Indiana University School of Medicine pada tahun 1972.McDonald pertama kali mengaplikasikan EMR pada 33 orang pasien penyakit gula(diabetes). Sekarang EMR ini telah diaplikasikan pada berbagai penyakit. Data yangdisimpan meliputi data analisa diagnosa laboratorium, hasil konsultasi dan saran, fotorontgen, ukuran detak jantung, dan lain lain. Dengan data ini dokter akan bisa menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengandibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat menentukan obat yang sesuai dengan kondisi pasien tertentu dan lebih jauh lagi, dengan dibacanya genom manusia, akan memungkinkan untuk mengetahui penyakit genetik seseorang, sehingga penanganan terhadap pasien menjadi lebih akurat.

Bioinformatika untuk Identifikasi Agent  Penyakit Baru
Bioinformatika juga menyediakan tool yang sangat penting untuk identifikasi agent penyakit yang belum dikenal penyebabnya. Banyak sekali penyakit baru yangmuncul dalam dekade ini, dan diantaranya yang masih hangat adalah SARS (SevereAcute Respiratory Syndrome).Pada awalnya, penyakit ini diperkirakan disebabkan oleh virus influenza karenagejalanya mirip dengan gejala pengidap influenza. Akan tetapi ternyata dugaan ini salahkarena virus influenza tidak terisolasi dari pasien. Perkirakan lain penyakit ini disebabkanoleh bakteri Candida karena bakteri ini terisolasi dari beberapa pasien. Tapi perkiraan ini juga salah. Akhirnya ditemukan bahwa dari sebagian besar pasien SARS terisolasi virus Corona jika dilihat dari morfologinya. Sekuen genom virus ini kemudian dibaca dan darihasil analisa dikonfirmasikan bahwa penyebab SARS adalah virus Corona yang telah berubah (mutasi) dari virus Corona yang ada selama ini. Dalam rentetan proses ini, Bioinformatika memegang peranan penting. Pertama pada proses pembacaan genom virus Corona. Karena didatabase seperti GenBank,EMBL (European Molecular Biology Laboratory), dan DDBJ (DNA Data Bank of Japan) sudah tersedia data sekuen beberapa virus Corona, yang bisa digunakan untuk mendisain primer yang digunakan untuk amplifikasi DNA virus SARS ini. Software untuk mendisain primer juga tersedia, baik yang gratis maupun yang komersial.
Contoh yang gratis adalah Webprimer  yang disediakan oleh Stanford Genomic Resources:
(http://genome-www2.stanford.edu/cgi-bin/SGD/web-primer).
GeneWalker yang disediakan oleh Cybergene AB:
(http://www.cybergene.se/primerdisain/genewalker), dan lain sebagainya.
Untuk yang komersial ada Primer Disainer  yang dikembangkan olehScientific & Education Software, dan software-software untuk analisa DNA lainnya seperti Sequencher  (GeneCodes Corp.), SeqMan II  (DNA STAR Inc.), Genetyx (GENETYX Corp.), DNASIS  (HITACHI Software), dan lain lain.
Kedua pada proses mencari kemiripan sekuen ( homology alignment ) virus yang didapatkan dengan virus lainnya. Dari hasil analisa virus SARS diketahui bahwa genomvirus Corona penyebab SARS berbeda dengan virus Corona lainnya.
Perbedaan ini diketahui dengan menggunakan homology alignment  dari sekuen virus  SARS. Selanjutnya, Bioinformatika juga berfungsi untuk analisa posisi sejauh mana suatu virus berbeda dengan virus lainnya.


CABANG-CABANG YANG TERKAIT DENGAN BIOINFORMATIKA
Di bawah ini akan disebutkan beberapa bidang yang terkait dengan Bioinformatika.
Biophysics
Biologi molekul sendiri merupakan pengembangan yang lahir dari biophysics.  Biophysics adalah sebuah bidang interdisipliner yang mengaplikasikan teknik-teknik dari ilmu Fisika untuk memahami struktur dan fungsi biologi ( British Biophysical Society). Sesuai dengan definisi di atas, bidang ini merupakan suatu bidang yang luas. Namun secara langsung disiplin ilmu ini terkait dengan Bioinformatika karena penggunaan teknik-teknik dari ilmu Fisika untuk memahami struktur membutuhkan penggunaan TI.

Computational Biology
Computational biology merupakan bagian dari Bioinformatika (dalam arti yang paling luas) yang paling dekat dengan bidang Biologi umum klasik. Fokus dari computational biology adalah gerak evolusi, populasi, dan biologi teoritis daripada biomedis dalam molekul dan sel. Tak dapat dielakkan bahwa Biologi Molekul cukup penting dalam computational biology , namun itu bukanlah inti dari disiplin ilmu ini. Pada penerapan computational biology, model-model statistika untuk fenomena biologi lebih disukai dipakai dibandingkan dengan model sebenarnya. Dalam beberapa hal caratersebut cukup baik mengingat pada kasus tertentu eksperimen langsung pada fenomena biologi cukup sulit. Tidak semua dari computational biology merupakan Bioinformatika, seperti contohnya Model Matematika bukan merupakan Bioinformatika, bahkan meskipun dikaitkan dengan masalah biologi.


Medical Informatics
Menurut Aamir Zakaria [ZAKARIA2004], Pengertian dari medical informatics adalah " sebuah disiplin ilmu yang baru yang didefinisikan sebagai pembelajaran, penemuan, dan implementasi dari struktur dan algoritma untuk meningkatkan komunikasi, pengertian dan manajemen informasi medis."Medical informatics lebih memperhatikan struktur dan algoritma untuk  pengolahan data medis, dibandingkan dengan data itu sendiri. Disiplin ilmu ini, untuk alasan praktis, kemungkinan besar berkaitan dengan data-data yang didapatkan pada level biologi yang lebih "rumit" --yaitu informasi dari sistem-sistem superselular, tepat padalevel populasi—di mana sebagian besar dari Bioinformatika lebih memperhatikan informasi dari sistem dan struktur biomolekul dan selular.
           
Cheminformatics
Cheminformatics adalah kombinasi dari sintesis kimia, penyaringan biologis, dan pendekatan data-mining yang digunakan untuk penemuan dan pengembangan obat ( Cambridge Healthech Institute's Sixth Annual Cheminformatics conference). Pengertian disiplin ilmu yang disebutkan di atas lebih merupakan identifikasi dari salah satu aktivitas yang paling populer dibandingkan dengan berbagai bidang studi yang mungkin ada di bawah bidang ini.Salah satu contoh penemuan obat yang paling sukses sepanjang sejarah adalah penisilin, dapat menggambarkan cara untuk menemukan dan mengembangkan obat-obatan hingga sekarang --meskipun terlihat aneh--. Cara untuk menemukan dan mengembangkan obat adalah hasil dari kesempatan, observasi, dan banyak proses kimiayang intensif dan lambat. Sampai beberapa waktu yang lalu, disain obat dianggap harus selalu menggunakan kerja yang intensif, proses uji dan gagal. Kemungkinan penggunaan TI untuk merencanakan secara cerdas dan denganmengotomatiskan proses-proses yang terkait dengan sintesis kimiawi dari komponen-komponen pengobatan merupakan suatu prospek yang sangat menarik bagi ahli kimiadan ahli biokimia. Penghargaan untuk menghasilkan obat yang dapat dipasarkan secaralebih cepat sangatlah besar, sehingga target inilah yang merupakan inti dari Cheminformatics. Ruang lingkup akademis dari cheminformatics ini sangat luas.
Contoh bidang minatnya antara lain: Synthesis Planning, Reaction and Structure Retrieval, 3-DStructure Retrieval, Modelling, Computational Chemistry, Visualisation Tools and Utilities.
           
Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom,kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untuk menganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.

Mathematical Biology
Mathematical biology lebih mudah dibedakan dengan Bioinformatika daripada computational biology dengan Bioinformatika. Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware. Bahkan metode yang dipakai tidak perlu "menyelesaikan" masalah apapun; dalam mathematical biology bisa dianggap beralasan untuk mempublikasikan sebuah hasil yang hanya menyatakan bahwa suatu masalah biologi berada pada kelasumum tertentu.Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.

Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun ( encoded ) oleh genom. Ilmu yang mempelajari proteome,yang disebut proteomics, pada saat ini tidak hanya memperhatikan semua protein didalam sel yang diberikan, tetapi juga himpunan dari semua bentuk isoform dan modifikasi dari semua protein, interaksi diantaranya, deskripsi struktural dari protein- protein dan kompleks-kompleks orde tingkat tinggi dari protein, dan mengenai masalahtersebut hampir semua pasca genom.Michael J. Dunn [DUNN2004], Pemimpin Redaksi dari Proteomics mendefiniskan kata " proteome " sebagai: " The PROTEin complement of the genOME ".Dan mendefinisikan proteomics berkaitan dengan: "studi kuantitatif dan kualitatif dariekspresi gen di level dari protein-protein fungsional itu sendiri". Yaitu: "sebuahantarmuka antara biokimia protein dengan biologi molekul".Mengkarakterisasi sebanyak puluhan ribu protein-protein yang dinyatakan dalamsebuah tipe sel yang diberikan pada waktu tertentu --apakah untuk mengukur beratmolekul atau nilai-nilai isoelektrik protein-protein tersebut-- melibatkan tempat penyimpanan dan perbandingan dari data yang memiliki jumlah yang sangat besar, tak terhindarkan lagi akan memerlukan Bioinformatika.



KONDISI DAN PENERAPAN BIOINFORMATIKA DI INDONESIA
Kondisi Bioinformatika di Indonesia
Di Indonesia, Bioinformatika masih belum dikenal oleh masyarakat luas. Hal ini dapat dimaklumi karena penggunaan komputer sebagai alat bantu belum merupakan budaya. Bahkan di kalangan peneliti sendiri, barangkali hanya para peneliti biologi molekul yang sedikit banyak mengikuti perkembangannya karena keharusan menggunakan perangkat-perangkat Bioinformatika untuk analisa data. Sementara dikalangan TI masih kurang mendapat perhatian. Ketersediaan database dasar (DNA, protein) yang bersifat terbuka/gratis merupakan peluang besar untuk menggali informasi berharga daripadanya. Database genom manusia sudah disepakati akan bersifat terbuka untuk seluruh kalangan, sehinggadapat digali/diketahui kandidat-kandidat gen yang memiliki potensi kedokteran/farmasi. Dari sinilah Indonesia dapat ikut berperan mengembangkan Bioinformatika. Kerjasama antara peneliti bioteknologi yang memahami makna biologis data tersebut dengan praktisiTI seperti programmer, dan sebagainya akan sangat berperan dalam kemajuan Bioinformatika Indonesia nantinya.

Penerapan Bioinformatika di Indonesia
Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalam mengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah. Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatikaini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain:

Deteksi Kelainan Janin
Lembaga Biologi Molekul Eijkman bekerja sama dengan Bagian Obstetri danGinekologi Fakultas Kedokteran Universitas Indonesia dan Rumah Sakit CiptoMangunkusumo sejak November 2001 mengembangkan klinik genetik untuk mendeteksisecara dini sejumlah penyakit genetik yang menimbulkan gangguan pertumbuhan fisik maupun retardasi mental seperti antara lain, talasemia dan sindroma down. Kelainan ini bisa diperiksa sejak janin masih berusia beberapa minggu.Talasemia adalah penyakit keturunan di mana tubuh kekurangan salah satu zat pembentuk hemoglobin (Hb) sehingga mengalami anemia berat dan perlu transfusi darahseumur hidup. Sedangkan sindroma down adalah kelebihan jumlah untaian di kromosom21 sehingga anak tumbuh dengan retardasi mental, kelainan jantung, pendengaran dan penglihatan buruk, otot lemah serta kecenderungan menderita kanker sel darah putih(leukemia).Dengan mengetahui sejak dini, pasangan yang hendak menikah, atau pasanganyang salah satunya membawa kelainan kromosom, atau pasangan yang mempunyai anak yang menderita kelainan kromosom, atau penderita kelainan kromosom yang sedang hamil, atau ibu yang hamil di usia tua bisa memeriksakan diri dan janin untuk memastikan apakah janin yang dikandung akan menderita kelainan kromosom atau tidak,sehingga mempunyai kesempatan untuk mempertimbangkan apakah kehamilan akan diteruskan atau tidak setelah mendapat konseling genetik tentang berbagai kemungkinan yang akan terjadi. Di bidang talasemia, Eijkman telah memiliki katalog 20 mutasi yang mendasaritalasemia beta di Indonesia, 10 di antaranya sering terjadi. Lembaga ini juga mempunyaiinformasi cukup mengenai spektrum mutasi di berbagai suku bangsa yang sangat bervariasi. Talasemia merupakan penyakit genetik terbanyak di dunia termasuk diIndonesia.

Pengembangan Vaksin Hepatitis B Rekombinan
Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMNDepartemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.

Meringankan Kelumpuhan dengan Rekayasa RNA
Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kinidapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidak normalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini.Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa.Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofinte rdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesicdalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian. Teknologi rekayasa RNA seperti proses penyambungan ( slicing ) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk  protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.








SUMBER:
http://id.wikipedia.org/wiki/Bioinformatika
http://goenawanb.com/it/sejarah-bioinformatika-dan-peranannya/
https://bioinformaticjbub.wordpress.com/2010/02/22/whats-bioinformatics/
http://suryokuncorojakti-fkh.web.unair.ac.id/artikel_detail-38847-Biomo
 http://www.scribd.com/doc/60229429/Bioinformatika
lekuler%20dan%20Imunologi-Bioinformatika.html

Read More.. Read More..

Komputasi Modern, Sejarahnya, dan Macam-Macam Komputasi Mode


Kali ini kita akan membahas mengenai komputasi modern, mulai dari definisi, sejarah dan macam-macam komputasi modern.  Awal mulanya diciptakan computer pada masa pertama penciptaannya, adalah untuk membantu manusia dalam melakukan pengolahan dan penghitungan data. Hal ini dikarenakan jumlah data yang harus diproses semakin banyak dan semakin kompleks. Bayangkan bila untuk menghitung data, manusia pada waktu dulu masih menggunakan kertas, dan alat bantu manual yang belum canggih seperti sekarang ini. Bila data yang harus diproses semakin bertambah banyak, maka secara otomatis tingkat keakuratan data semakin berkurang, dan prosesnya pun semakin melelahkan.
Oleh karenanya diciptakan sebuah alat komputasi modern yang bisa membantu dan memudahkan manusia dalam menghitung. Selain itu dibutuhkan pula alat penghitungan yang bisa secara otomatis menghitung program bila kita masukkan sebuah program. Sehingga, terciptalah computer sebagai alat hitung yang bisa memenuhi segala kebutuhan tersebut hingga sekarang kita gunakan dengan fungsi yang semakin beragam dan kompleks.

Komputasi Modern

Komputasi modern terdiri dari buah kata, yaitu komputasi dan modern. Komputasi seperti yang telah dijelaskan di atas merupakan cara yang digunakan di dalam menemukan suatu solusi dari data yg telah diinput dengan menggunakan algoritma. Sedangkan modern merupakan sesuatu yang berhubungan dengan teknologi masa kini. Sehingga Komputasi Modern merupakan perhitungan yang menggunakan computer canggih dimana pada computer tersebut tersimpan sejumlah algoritma untuk menyelesaikan masalah perhitungan secara efektif dan efisien.

Komputasi modern ini berbeda dengan ilmu computer yang mengkaji komputasi computer dan pemrosesan informasi. Bidang ini juga berbeda dengan teori dan percobaan sebagai bentuk tradisional dari ilmu dan kerja keilmuan. Dalam ilmu alam, pendekatan ilmu komputasi dapat memberikan berbagai pemahaman baru, melalui penerapan model-model matematika dalam program komputer berdasarkan landasan teori yang telah berkembang, untuk menyelesaikan masalah-masalah nyata dalam ilmu tersebut. Dalam komputasi modern terdapat perhitungan dan pencarian solusi dari masalah yang ada, yang menjadi perhitungan dari komputasi modern adalah :

·       akurasi : yang berhubungan dengan bit dan floating point
·       kecepatan : dalam satuan hertz (processor tunggal, pipeline, parallel processing)
·       problem volume besar : down sizing, parallel
·       modelling : NN, GA
·       kompleksitas : menggunakan teori big O

SEJARAH KOMPUTASI MODERN

Pada tahun 1613 muncullah penggunaan kata “komputer” pertama kali.
  • Tahun 1940 komputer yang semula dikhususkan sebagai instrument untuk science, berubah menjadi produk komersil.
  • Tahun 1945 di temukan Bug Komputer oleh Grace Murray Hopper
  • Tahun 1947 tanggal 23 Desember ditemukan transistor yang pertama kali oleh Bardeen dan Walter Brattain bersama dengan William Shockley
  • Tahun 1951 dimulai sebuah gagasan microprogramming oleh Maurice Wilkes
  • Tahun 1951-1952 Grace Murray Hopper mengembangkan A-O, yang merupakan compiler pertama.
  • Tahun 1957 John Backus dan kolega IBM mengirimkan Compiler Fortran yang pertama.
  • Tahun 1958 Jack Kilby menghasilkan prototype semiconductor IC
  • Tahun 1960 merupakan timbulnya system kecil seperti word length, register structure, Number of Addresses, I/O channel, Floating point hardware.
  • Tahun 1960 juga Paul Baran yang bekerja di Rand Corp. menemukan dasar packet switching untuk data komunikasi.
  • Tahun 1962 video game pertama kali di temukan oleh Steve Russell yang merupakan seorang lulusan MIT.
  • Tahun 1964 mouse ditemukan oleh Doug Engelbart.
  • Tahun 1969 munculnya internet oleh DARPA
  • Tahun 1970 merupakan kedatangan PC (personal computer).
  • Tahun 1970 ditemukan UNIX oleh Dennis Ritchie dan Kenneth Thomson.
  • Pada tahun 1970 juga floppy disk dan daisywheel printer di tunjukkan kepada umum (debut pertama).
  • Tahun 1971 Ray Tomlinson of Bolt Beranek dan Newmen pertama kali mengirimkan jaringan surat e-mail.
  • Tahun 1971 Niklaus Wirth menemukan Pascal
  • Tahun 1972 di temukan bahasa C oleh Dennis Ritchie di Bell Labs.
  • Tahun 1973 Robert Metcalfe menuliskan catatan di “Ether Acquisition” yang mendeskripsikan Ethernet.
  • Tahun 1973 Robert Metcalfe dan David Boggs menemukan Ethernet.
  • Tahun 1976 merupakan tahun pertama kalinya muncul supercomputer dengan vektorial arsitektur.
  • Tahun 1976, Steve Jobs dan Steve Wozniak mendesain dan membangun Apple I yang terdiri dari kebanyakan papan circuit.
  • Tahun 1977, Steve Jobs dan Steve Wozniak tergabung dalam Apple computer pada 3 januari.
  • Tahun 1978, Muncul MS.
  • Tahun 1978, Wordstar yang merupakan software pengolah kata diperkenalkan dan meluas.
  • Tahun 1979 telepon seluler di test di Jepang dan Chicago.
  • Tahun 1980 IBM memilih PC-DOS dari Microsoft sebagai OS (Operating System)
  • Tahun 1980 bahasa Ada muncul yang di temukan oleh Departemen Pertahanan US.
  • Tahun 1980 portable computer seberat 24 pounds lahir.
  • 1 januari 1983, muncul TCP/IP
  • Tahun 1984, muncul Apple Macintosh
  • Tahun 1984, muncul DNS
  • Tahun 1985 menyebarnya sistem networking.
  • Tahun 1990 tim Barners Lee Menemukan WWW yaitu aplikasi internet yang membawa perkembangan dan perubahan besar di dunia internet.
  • Tahun 1991 Trovalds menempatkan UNIX di IBMnya.
  • Tahun 1992 muncul istilah surfing
  • Tahun 1993 pentium milik intel diperkenalkan kepada umum pada bulan Maret
  • Tahun 1993 muncul NSCA Mosaic
  • Tahun 1994 muncul Yahoo dan Netscape Navigator 1.0
  • Tahun 1995 muncul bahasa pemrograman Java pada bulan Mei.
  • Pada Desember 1994 maka Spyglass milik Microsoft telah dibayar dan diberi lisensi, sehingga untuk web browser yang nantinya nama spyglass tersebut akan diganti dengan nama Internet Explorer.
  • Pada 1995 spyglass sudah menjadi bagian dari OS dan bagian dari windows. 

Sejarah singkat dari perjalanan hidup dari Von Neumann , dilahirkan di Budapest, Hungaria pada 28 Desember 1903 dengan nama Neumann Janos. Dia adalah anak pertama dari pasangan Neumann Miksa dan Kann Margit.Nama keluarga diletakkan di depan nama asli. Sehingga dalam bahasa Inggris, nama orang tuanya menjadi Max Neumann. Pada saat Max Neumann memperoleh gelar, maka namanya berubah menjadi Von Neumann. Setelah bergelar doktor dalam ilmu hukum, dia menjadi pengacara untuk sebuah bank. Pada tahun 1903, Budapest merupakan  tempat lahirnya para manusia genius dari bidang sains, penulis, seniman dan musisi.

Von Neumann belajar berbagai tempat dan beberapa tempatnya di Berlin dan Zurich. Di tempat itu beliau mendapatkan diploma pada bidang teknik kimia pada tahun 1926. Pada tahun yang sama dia mendapatkan gelar doktor pada bidang matematika dari Universitas Budapest. Keahlian Von Neumann terletak pada bidang teori game yang melahirkan konsep seluler automata, teknologi bom atom, dan komputasi modern yang kemudian melahirkan komputer. Kegeniusannya dalam bidang matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.

Beliau pernah mengajar di Berlin dan Hamburg, Von Neumann pindah ke Amerika pada tahun 1930 dan bekerja di Universitas Princeton pada saat yang bersamaan Von Neumann menjadi salah satu pendiri Institute for Advanced Studies.
Von Neumann sangat tertarik pada hidrodinamika dan kesulitan penyelesaian persamaan diferensial parsial nonlinier yang digunakan, Von Neumann kemudian beralih dalam bidang komputasi. Von Neumann menjadi seorang konsultan pada pengembangan komputer ENIAC, dia merancang konsep arsitektur komputer yang masih dipakai sampai sekarang. Arsitektur Von Nuemann adalah seperangkat komputer dengan program yang tersimpan (program dan data disimpan pada memori) dengan pengendali pusat, I/O, dan memori.

Berikut ini beberapa contoh komputasi modern sampai dengan lahirnya ENIAC :

Konrad Zuse’s electromechanical “Z mesin”.Z3 (1941) sebuah mesin pertama menampilkan biner aritmatika, termasuk aritmatika floating point dan ukuran programmability. Pada tahun 1998, Z3 operasional pertama di dunia komputer itu di anggap sebagai Turing lengkap.
MACAM-MACAM KOMPUTASI MODERN

Sebelumnya jenis -jenis komputasi modern terbagi tiga macam, yaitu komputasi mobile (bergerak), komputasi grid, dan komputasi cloud (awan). Penjelasan lebih lanjut dari jenis-jenis komputasi modern sebagai berikut :

1. Mobile computing

Mobile computing atau komputasi bergerak memiliki beberapa penjelasan, salah satunya komputasi bergerak merupakan kemajuan teknologi komputer sehingga dapat berkomunikasi menggunakan jaringan tanpa menggunakan kabel dan mudah dibawa atau berpindah tempat, tetapi berbeda dengan komputasi nirkabel.

Dan berdasarkan penjelasan tersebut, untuk kemajuan teknologi ke arah yang lebih dinamis membutuhkan perubahan dari sisi manusia maupun alat. Dan dapat dilihat contoh dari perangkat komputasi bergerak seperti GPS, juga tipe dari komputasi bergerak seperti smart phone, dan lain sebagainya.

2. Grid computing

Komputasi grid menggunakan komputer yang terpisah oleh geografis, didistibusikan dan terhubung oleh jaringan untuk menyelasaikan masalah komputasi skala besar.

Ada beberapa daftar yang dapat dugunakan untuk mengenali sistem komputasi grid, adalah :
·  Sistem untuk koordinat sumber daya komputasi tidak dibawah kendali pusat.
·  Sistem menggunakan standard dan protocol yang terbuka.
· Sistem mencoba mencapai kualitas pelayanan yang canggih, yang lebih baik diatas kualitas komponen individu pelayanan komputasi grid.

3. Cloud computing

Komputasi cloud merupakan gaya komputasi yang terukur dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.

Komputasi cloud menggambarkan pelengkap baru, konsumsi dan layanan IT berbasis model dalam internet, dan biasanya melibatkan ketentuan dari keterukuran dinamis dan sumber daya virtual yang sering menyediakan layanan melalui internet.
Contoh cloud computing pada sebuah inovasi dimana segala aktifitas komputerisasi dilakukan melalui jalur internet.

Adapun perbedaan antara komputasi mobile, komputasi grid dan komputasi cloud, dapat dilihat penjelasannya dibawah ini :
  • Komputasi mobile menggunakan teknologi komputer yang bekerja seperti handphone, sedangkan komputasi grid dan cloud menggunakan komputer. 
  • Biaya untuk tenaga komputasi mobile lebih mahal dibandingkan dengan komputasi grid dan cloud. 
  • Komputasi mobile tidak membutuhkan tempat dan mudah dibawa kemana-mana, sedangkan grid dan cloud membutuhkan tempat yang khusus. 
  • Untuk komputasi mobile proses tergantung si pengguna, komputasi grid proses tergantung pengguna mendapatkan server atau tidak, dan komputasi cloud prosesnya membutuhkan jaringan internet sebagai penghubungnya.
Dan ada juga persamaan antara komputasi mobile, komputasi grid, dan komputasi cloud, penjelasanya sebagai berikut :
  • Ketiganya merupakan metode untuk melakukan komputasi, pemecahan masalah, dan pencarian solusi.
  • Ketiganya memerlukan alat proses data yang modern seperti komputer, laptop atau telepon genggam untuk menjalankannya.
       

Sumber:
http://id.wikipedia.org/wiki/Komputasi
http://www.scribd.com/doc/24593215/SEJARAH-KOMPUTASI
http://wartawarga.gunadarma.ac.id/2012/03/komputasi-modern-33/
http://irmamino.wordpress.com/2011/02/22/tugas-softskill-komputasi-modern/

 
Read More.. Read More..

KOMPUTASI MODERN, PARALLEL PROCESSING, BIOINFORMATIKA



Pengertian Komputasi Modern

     Komputasi modern adalah sebuah konsep sistem yang menerima intruksi-intruksi dan menyimpannya dalam sebuah memory, memory disini bisa juga dari memory komputer. Oleh karena pada saat ini kita melakukan komputasi menggunakan komputer maka bisa dibilang komputer merupakan sebuah komputasi modern. Konsep ini pertama kali digagasi oleh John Von Neumann (1903-1957). Beliau adalah ilmuan yang meletakkan dasar-dasar komputer modern. Von Neumann telah menjadi ilmuwan besar abad 21. Von Neumann memberikan berbagai sumbangsih dalam bidang matematika, teori kuantum, game theory, fisika nuklir, dan ilmu komputer yang di salurkan melalui karya-karyanya . Beliau juga merupakan salah satu ilmuwan yang terkait dalam pembuatan bom atom di Los Alamos pada Perang Dunia II lalu. Kegeniusannya dalam matematika telah terlihat semenjak kecil dengan mampu melakukan pembagian bilangan delapan digit (angka) di dalam kepalanya.
Dalam kerjanya komputasi modern menghitung dan mencari solusi dari masalah yang ada, dan perhitungan yang dilakukan itu meliputi:

  •  Akurasi (big, Floating point)
  • Kecepatan (dalam satuan Hz)
  •  Problem Volume Besar (Down Sizzing atau pararel)
  • Modeling (NN & GA)
  • Kompleksitas (Menggunakan Teori big O)

Definisi Bioinformatika


Bioinformatika “klasik”
Sebagian besar ahli Biologi mengistilahkan ‘mereka sedang melakukanBioinformatika’ ketika mereka sedang menggunakan komputer untuk menyimpan, melihat atau mengambil data, menganalisa atau memprediksi komposisi atau struktur dari biomolekul. Ketika kemampuan komputer menjadi semakin tinggi maka proses yang dilakukan dalam Bioinformatika dapat ditambah dengan melakukan simulasi. Yang termasuk biomolekul diantaranya adalah materi genetik dari manusia –asam nukleat– dan produk dari gen manusia, yaitu protein. Hal-hal diataslah yang merupakan bahasan utama dari Bioinformatika “klasik”, terutama berurusan dengan analisis sekuen (sequenceanalysis).
Definisi Bioinformatika menurut Fredj Tekaia dari Institut Pasteur[TEKAIA2004] adalah: “metode matematika, statistik dan komputasi yang bertujuan untuk menyelesaikan masalah-masalah biologi dengan menggunakan sekuen DNA dan asam amino dan informasi-informasi yang terkait dengannya.
Dari sudut pandang Matematika, sebagian besar molekul biologi mempunyai sifatyang menarik, yaitu molekul-molekul tersebut adalah polymer; rantai-rantai yang tersusun rapi dari modul-modul molekul yang lebih sederhana, yang disebut monomer. Monomer dapat dianalogikan sebagai bagian dari bangunan, dimana meskipun bagianbagian tersebut berbeda warna dan bentuk, namun semua memiliki ketebalan yang sama dan cara yang sama untuk dihubungkan antara yang satu dengan yang lain. Monomer yang dapat dikombinasi dalam satu rantai ada dalam satu kelas umum yang sama, namun tiap jenis monomer dalam kelas tersebut mempunyai karakteristik masing-masing yang terdefinisi dengan baik.
Beberapa molekul-molekul monomer dapat digabungkan bersama membentuksebuah entitas yang berukuran lebih besar, yang disebut macromoleculeMacromoleculedapat mempunyai informasi isi tertentu yang menarik dan sifat-sifat kimia tertentu. Berdasarkan skema di atas, monomer-monomer tertentu dalam macromoleculedari DNA dapat diperlakukan secara komputasi sebagai huruf-huruf dari alfabet, yang diletakkan dalam sebuah aturan yang telah diprogram sebelumnya untuk membawa pesan atau melakukan kerja di dalam sel.
Proses yang diterangkan di atas terjadi pada tingkat molekul di dalam sel. Salahsatu cara untuk mempelajari proses tersebut selain dengan mengamati dalam laboratorium biologi yang sangat khusus adalah dengan menggunakan Bioinformatika sesuai dengan definisi “klasik” yang telah disebutkan di atas.
Bioinformatika “baru”
Salah satu pencapaian besar dalam metode Bioinformatika adalah selesainyaproyek pemetaan genom manusia (Human Genome Project). Selesainya proyek raksasa tersebut menyebabkan bentuk dan prioritas dari riset dan penerapan Bioinformatika berubah. Secara umum dapat dikatakan bahwa proyek tersebut membawa perubahan besar pada sistem hidup kita, sehingga sering disebutkan –terutama oleh ahli biologi– bahwa kita saat ini berada di masa pascagenom. Selesainya proyek pemetaan genom manusia ini membawa beberapa perubahan bagi Bioinformatika, diantaranya:
Setelah memiliki beberapa genom yang utuh maka kita dapat mencari perbedaan dan persamaan di antara gen-gen dari spesies yang berbeda. Dari studi perbandingan antara gen-gen tersebut dapat ditarik kesimpulan tertentu mengenai spesies-spesies dan secara umum mengenai evolusi. Jenis cabang ilmu ini sering disebut sebagai perbandingan genom (comparative genomics).
Sekarang ada teknologi yang didisain untuk mengukur jumlah relatif darikopi/cetakan sebuah pesan genetik (level dari ekspresi genetik) pada beberapa tingkatan yang berbeda pada perkembangan atau penyakit atau pada jaringan yang berbeda. Teknologi tersebut, contohnya seperti DNA microarrays akan semakin penting. Akibat yang lain, secara langsung, adalah cara dalam skala besar untuk mengidentifikasi fungsi-fungsi dan keterkaitan dari gen (contohnya metode yeast twohybrid)akan semakin tumbuh secara signifikan dan bersamanya akan mengikuti
Bioinformatika yang berkaitan langsung dengan kerja fungsi genom (functionalgenomics). Akan ada perubahan besar dalam penekanan dari gen itu sendiri ke hasil-hasil dari gen. Yang pada akhirnya akan menuntun ke: usaha untuk mengkatalogkan semua aktivitas dan karakteristik interaksi antara semua hasil-hasil dari gen (pada manusia) yang disebut proteomics; usaha untuk mengkristalisasi dan memprediksikan struktur-struktur dari semua protein (pada manusia) yang disebut structural genomics. Apa yang disebut orang sebagai research informatics atau medical informatics, manajemen dari semua data eksperimen biomedik yang berkaitan dengan molekul atau pasien tertentu –mulai dari spektroskop massal, hingga ke efek samping klinis—akan berubah dari semula hanya merupakan kepentingan bagi mereka yang bekerja di perusahaan obat-obatan dan bagian TI Rumah Sakit akan menjadi jalur utama dari biologi molekul dan biologi sel, dan berubah jalur dari komersial dan klinikal ke arah akademis.
Dari uraian di atas terlihat bahwa Bioinformatika sangat mempengaruhi kehidupan manusia, terutama untuk mencapai kehidupan yang lebih baik. Penggunaan komputer yang notabene merupakan salah satu keahlian utama dari orang yang bergerak dalam TI merupakan salah satu unsur utama dalam Bioinformatika, baik dalam Bioinformatika “klasik” maupun Bioinformatika “baru”.


Cabang-cabang yang terkait dengan Bioinformatika
Genomics
Genomics adalah bidang ilmu yang ada sebelum selesainya sekuen genom, kecuali dalam bentuk yang paling kasar. Genomics adalah setiap usaha untukmenganalisa atau membandingkan seluruh komplemen genetik dari satu spesies atau lebih. Secara logis tentu saja mungkin untuk membandingkan genom-genom dengan membandingkan kurang lebih suatu himpunan bagian dari gen di dalam genom yang representatif.
Mathematical Biology
Mathematical biology juga menangani masalah-masalah biologi, namun metode yang digunakan untuk menangani masalah tersebut tidak perlu secara numerik dan tidak perlu diimplementasikan dalam software maupun hardware.
Menurut Alex Kasman [KASMAN2004] Secara umum mathematical biology melingkupi semua ketertarikan teoritis yang tidak perlu merupakan sesuatu yang beralgoritma, dan tidak perlu dalam bentuk molekul, dan tidak perlu berguna dalam menganalisis data yang terkumpul.
Proteomics
Istilah proteomics pertama kali digunakan untuk menggambarkan himpunan dari protein-protein yang tersusun (encoded) oleh genom. Michael J. Dunn [DUNN2004], mendefiniskan kata “proteome” sebagai: “The PROTEin complement of the genOME“. Dan mendefinisikan proteomics berkaitan dengan: “studi kuantitatif dan kualitatif dari ekspresi gen di level dari protein-protein fungsional itu sendiri”. Yaitu: “sebuah antarmuka antara biokimia protein dengan biologi molekul”.
Pharmacogenomics
Pharmacogenomics adalah aplikasi dari pendekatan genomik dan teknologi pada identifikasi dari target-target obat. Contohnya meliputi menjaring semua genom untuk penerima yang potensial dengan menggunakan cara Bioinformatika, atau dengan menyelidiki bentuk pola dari ekspresi gen di dalam baik patogen maupun induk selama terjadinya infeksi, atau maupun dengan memeriksa karakteristik pola-pola ekspresi yang ditemukan dalam tumor atau contoh dari pasien untuk kepentingan diagnosa (kemungkinan untuk mengejar target potensial terapi kanker).
Istilah pharmacogenomics digunakan lebih untuk urusan yang lebih “trivial” — tetapi dapat diargumentasikan lebih berguna– dari aplikasi pendekatan Bioinformatika pada pengkatalogan dan pemrosesan informasi yang berkaitan dengan ilmu Farmasi dan Genetika, untuk contohnya adalah pengumpulan informasi pasien dalam database.
Pharmacogenetics
Pharmacogenetics adalah bagian dari pharmacogenomics yang menggunakan metode genomik/Bioinformatika untuk mengidentifikasi hubungan-hubungan genomik, contohnya SNP (Single Nucleotide Polymorphisms), karakteristik dari profil respons pasien tertentu dan menggunakan informasi-informasi tersebut untuk memberitahu administrasi dan pengembangan terapi pengobatan.
Gambaran dari sebagian bidang-bidang yang terkait dengan Bioinformatika di atas memperlihatkan bahwa Bioinformatika mempunyai ruang lingkup yang sangat luas dan mempunyai peran yang sangat besar dalam bidangnya. Bahkan pada bidang pelayanan kesehatan Bioinformatika menimbulkan disiplin ilmu baru yang menyebabkan peningkatan pelayanan kesehatan.
Penerapan Bioinformatika di Indonesia
Sebagai kajian yang masih baru, Indonesia seharusnya berperan aktif dalammengembangkan Bioinformatika ini. Paling tidak, sebagai tempat tinggal lebih dari 300 suku bangsa yang berbeda akan menjadi sumber genom, karena besarnya variasi genetiknya. Belum lagi variasi species flora maupun fauna yang berlimpah. Memang ada sejumlah pakar yang telah mengikuti perkembangan Bioinformatika ini, misalnya para peneliti dalam Lembaga Biologi Molekul Eijkman. Mereka cukup berperan aktif dalam memanfaatkan kajian Bioinformatika. Bahkan, lembaga ini telah memberikan beberapa sumbangan cukup berarti, antara lain:
Pengembangan Vaksin Hepatitis B Rekombinan
Lembaga Biologi Molekul Eijkman bekerja sama dengan PT Bio Farma (BUMNDepartemen Kesehatan yang memproduksi vaksin) sejak tahun 1999 mengembangkan vaksin Hepatitis B rekombinan, yaitu vaksin yang dibuat lewat rekayasa genetika. Selain itu Lembaga Eijkman juga bekerja sama dengan PT Diagnosia Dipobiotek untuk mengembangkan kit diagnostik.
Meringankan Kelumpuhan dengan Rekayasa RNA
Kasus kelumpuhan distrofi (Duchenne Muscular Dystrophy) yang menurun kinidapat dikurangi tingkat keparahannya dengan terapi gen. Kelumpuhan ini akibat ketidaknormalan gen distrofin pada kromosom X sehingga hanya diderita anak laki-laki. Diperkirakan satu dari 3.500 pria di dunia mengalami kelainan ini. Dengan memperbaiki susunan ekson atau bagian penyusun RNA gen tersebut pada hewan percobaan tikus, terbukti mengurangi tingkat kelumpuhan saat pertumbuhannya menjadi dewasa. Gen distrofin pada kasus kelumpuhan paling sering disebabkan oleh delesi atau hilangnya beberapa ekson pada gen tersebut. Normalnya pada gen atau DNA distrofin terdapat 78 ekson. Diperkirakan 65 persen pasien penderita DMD mengalami delesi dalam jumlah besar dalam gen distrofinnya. Kasus kelumpuhan ini dimulai pada otot prosima seperti pangkal paha dan betis. Dengan bertambahnya usia kelumpuhan akan meluas pada bagian otot lainnya hingga ke leher. Karena itu dalam kasus kelumpuhan yang berlanjut dapat berakibat kematian. Teknologi rekayasa RNA seperti proses penyambungan (slicing) ekson dalam satu rangkaian terbukti dapat mengoreksi mutasi DMD. Bila bagian ekson yang masih ada disambung atau disusun ulang, terjadi perubahan asam amino yang membentuk protein. Molekul RNA mampu mengenali molekul RNA lainnya dan melekat dengannya.

PARALEL PROCESSING

Definisi
Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer independen secara bersamaan. Ini umumnya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar (di industri keuangan, bioinformatika, dll) ataupun karena tuntutan proses komputasi yang banyak.
Untuk melakukan berbagai jenis komputasi paralel diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk digunakan perangkat lunak pendukung yang biasa disebut middleware yang berperan mengatur distribusi antar titik dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Salah satu middleware yang asli dikembangkan di Indonesia adalah OpenPC yang dipelopori oleh GFTK LIPI dan diimplementasikan di LIPI Public Center.
Pemrograman Paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah/operasi secara bersamaan. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam satu jaringan komputer, biasanya disebut sistem terdistribusi. Bahasa pemrograman yang populer digunakan dalam pemrograman paralel adalah MPI (Message Passing Interface) dan PVM (Parallel Virtual Machine).
Untuk lebih memperjelas lebih dalam mengenai perbedaan komputasi tunggal (menggunakan 1 processor) dengan komputasi paralel (menggunakan beberapa processor), maka kita harus mengetahui terlebih dahulu pengertian mengenai model dari komputasi. Ada 4 model komputasi yang digunakan, yaitu:
SISD
Yang merupakan singkatan dari Single Instruction, Single Data adalah satu-satunya yang menggunakan arsitektur Von Neumann. Ini dikarenakan pada model ini hanya digunakan 1 processor saja. Oleh karena itu model ini bisa dikatakan sebagai model untuk komputasi tunggal. Sedangkan ketiga model lainnya merupakan komputasi paralel yang menggunakan beberapa processor. Beberapa contoh komputer yang menggunakan model SISD adalah UNIVAC1, IBM 360, CDC 7600, Cray 1 dan PDP 1.
SIMD
Yang merupakan singkatan dari Single Instruction, Multiple Data. SIMD menggunakan banyak processor dengan instruksi yang sama, namun setiap processor mengolah data yang berbeda. Sebagai contoh kita ingin mencari angka 27 pada deretan angka yang terdiri dari 100 angka, dan kita menggunakan 5 processor. Pada setiap processor kita menggunakan algoritma atau perintah yang sama, namun data yang diproses berbeda. Misalnya processor 1 mengolah data dari deretan / urutan pertama hingga urutan ke 20, processor 2 mengolah data dari urutan 21 sampai urutan 40, begitu pun untuk processor-processor yang lain. Beberapa contoh komputer yang menggunakan model SIMD adalah ILLIAC IV, MasPar, Cray X-MP, Cray Y-MP, Thingking Machine CM-2 dan Cell Processor (GPU).
Hubungan antara Komputasi Modern dengan Paralel Processing

Hubungan antara komputasi modern dan parallel processing sangat berkaitan, karena penggunaan komputer saat ini atau komputasi dianggap lebih cepat dibandingkan dengan penyelesaian masalah secara manual. Dengan begitu peningkatan kinerja atau proses komputasi semakin diterapkan, dan salah satu caranya adalah dengan meningkatkan kecepatan perangkat keras. Dimana komponen utama dalam perangkat keras komputer adalah processor. Sedangkan parallel processing adalah penggunaan beberapa processor (multiprocessor atau arsitektur komputer dengan banyak processor) agar kinerja computer semakin cepat.

Kinerja komputasi dengan menggunakan paralel processing itu menggunakan dan memanfaatkan beberapa komputer atau CPU untuk menemukan suatu pemecahan masalah dari masalah yang ada. Sehingga dapat diselesaikan dengan cepat daripada menggunakan satu komputer saja. Komputasi dengan paralel processing akan menggabungkan beberapa CPU, dan membagi-bagi tugas untuk masing-masing CPU tersebut. Jadi, satu masalah terbagi-bagi penyelesaiannya. Tetapi ini untuk masalah yang besar saja, komputasi yang masalah kecil, lebih murah menggunakan satu CPU saja.
Kelebihan:
          ·         Waktu eksekusi lebih cepat.
          ·         Throughput jadi lebih tinggi.
Kekurangan:
          ·         Perangkat keras lainnya yang dibutuhkan.
          ·         Kebutuhan daya juga lebih.
          ·         Tidak baik untuk daya rendah dan perangkat mobile.
          ·         Parallel processing adalah salah satu teknik komputasi modern.
          ·         Karena membutuhkan banyak prosesor maka biaya mahal.
 
Read More.. Read More..